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ABSTRACT:  
The paper presents the results of seismic analyses of unreinforced brick masonry walls of a two storey building 
located in Montreal, Canada. The analysis incorporates a continuum formulation in which the anisotropic 
properties of the masonry are described using the critical plane approach. First, the specification of material 
functions/parameters is addressed. The approach involves numerical simulations of representative elementary 
volume (REV) using a mesoscale approach, which accounts for the onset and propagation of localized 
deformation. A general methodology is outlined and the results are compared with the available experimental data. 
The second part of this paper deals with the masonry building. A series of dynamic analyses have been conducted 
that include a study of the impact of seismic retrofit of the masonry walls on their overall stability. A simplified 
method using COSMOS/M and SAP2000 software’s is also presented and the effect of using “System DC90” 
dampers on the overhaul structural behavior is examined.   
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1. INTRODUCTION 
 
Assessment of the mechanical response of existing masonry buildings exposed to seismic loading is a 
complex and challenging task (Gocevski, 2008). This applies also for the recently proposed design of 
masonry structures constructed without reinforced concrete shear walls and/or frames and reinforced 
with steel bracings combined with system of energy dissipating dampers (Petraskovic 2010). An 
earthquake can have a devastating effect in particular on unreinforced masonry structures. It is therefore 
desirable to design an adequate reinforcement to enhance their seismic resistance. The analytical 
methods proposed by structural engineers are often based on simplistic numerical procedures which 
cannot realistically address the seismic response of existing masonry structures or the new proposed 
systems of masonry structures without reinforced concrete walls or frames. This is primarily due to the 
fact that masonry is a complex composite material, which is anisotropic on the macro scale and has a 
large number of possible modes of failure. The mechanical response is further complicated due to 
variability in the mechanical properties of its constituents (i.e. bricks and mortar) as well as in the quality 
of workmanship. Thus, a rational approach to the problem should incorporate advanced nonlinear 
formulations that account for the diversity of mechanical characteristics. 
 
The use of steel bracings with dampers capable to dissipate energy without allowing large deformations, 
such as the dampers “SYSTEM DC90”, complicates further the numerical procedure. The energy 
dissipating system in cases like this combines the existing masonry walls and the newly added steel 
bracings with dampers. The responses of these two systems are governed with entirely different 
yield/failure criterion. 

• The dampers follow the plastic flow rule of uniaxial compression/tension response of 
homogenous material (steel).  

• The behaviour of both constituents, i.e. bricks and mortar, is assumed to be elastic-brittle in 
tension regime, while for compressive stress trajectories, plastic-brittle characteristics are 



employed. Thus, in tension domain the yield and failure surfaces coincide with each other. 
However, in compression regime a distinct yield surface is introduced a priori, whose evolution 
is attributed to accumulated plastic distortions. 
 

The issue of seismic retrofit is particularly relevant to the buildings designed to ensure public safety, 
which are located in seismic zones of southern and eastern Quebec. These are structures of strategic 
importance and their analysis requires an appropriate methodology which goes beyond the present 
engineering practice. The work presented here is focused on the analysis of masonry walls of two story 
public safety building equipped with important instruments that must continue operating after an 
earthquake occurs. It is located in Montreal, Canada. The building was built in 1947 and, over the last 
few decades, it has suffered a minor damage due to uneven thermal expansion and contraction. As 
required by the National Building Code (NBC) of Canada any building constructed before 1970 must be 
evaluated under the NBC specified seismic loading. The building has non-bearing double layer 
masonry/concrete block walls that serve as enclosures. Since the main operational equipment is attached 
to the walls that must not collapse, the primary interest of this study is the assessment of the stability of 
these walls and the entire building under a seismic excitation. 
The behavior of masonry structures, such as the building analyzed here, should be examined by 
employing a macro-level formulation. The number of elements in a nonlinear dynamic analysis has a 
limit in order to execute the calculation in reasonably acceptable time. Therefore modeling each 
constituent (i.e. bricks and mortar) using a meso-scale approach is impossible for large models. In this 
paper, the masonry is described as a continuum whose average properties are identified at the level of 
constituents taking into account their geometric arrangement. 
  
Over the last decade, a number of different approximations have been developed for assessing the 
homogenized properties of structural masonry. Those include, among others, the micropolar Cosserat 
continuum models (e.g. Sulem & Muhlhaus, 1997) and theory of homogenization for periodic media 
(e.g. Anthoine, 1997). 
 
At the macro-level, a significant work has been undertaken with regards to the development of 
phenomenologicaly-based failure criteria for structural masonry. Examples include the studies of 
Lourenço et al. (1998) and Ushaksaraei & Pietruszczak (2002). 
 
This paper consists of two main parts. The first one deals with the meso-scale approach and its 
application in studying the mechanical characteristics of structural masonry. Here, the results of 
numerical simulations are provided for full-size brick masonry panels subjected to various loading 
histories. The objective is to derive the macro-scale characteristics of masonry form the properties of 
their constituents. Various methodologies are reviewed which include predictions based on 
strain-hardening plasticity that address both pre- and post-localization behaviour, elasto-perfect 
plasticity as well as limit analysis. In part two, this methodology is applied to identify the material 
functions/parameters of a continuum formulation using the properties representative of the masonry 
structure. In addition a simplified dynamic analysis of the structure incorporating equivalent Link 
elements replacing the full-size brick masonry panels is presented. The results (hysteresis of shear at the 
base to horizontal displacement at the top) for six (6) representative full-size masonry panels subjected 
to dynamic loading was used for defining equivalent Link elements (as defined by SAP2000 computer 
program). The building reinforced with steel bracings combined with System DC90 dampers was 
extensively analyzed. The main objective is to examine the stability of the unreinforced masonry walls 
of the structure under seismic excitation typical for the region and to evaluate the proposed refurbishing 
strategy and the requirements of adequate energy dissipating dampers. 
 
 
2. MODELLING OF THE RESPONSE OF STRUCTURAL MASONRY; MESO-SCALE 
APPROACH 
 
Assessment of the mechanical response of structural masonry is a complex and challenging task. 
Apparently, the most direct approach involves the experimental testing of masonry panels. One of the 



most comprehensive set of experimental data for in-plane loading of masonry at various angles of bed 
joint is that obtained by Page (1981, 1983). The experimental data of Page have already been used for 
partial verification and validation of various constitutive theories. One of the major problems associated 
with using experimental data for the purpose of a numerical analysis of boundary value problems is that 
of incompleteness of data. Most investigators determine material parameters which they think may be 
relevant. This may not be in accordance with the requirements of a specific framework, which may 
entail the use of a different set of parameters. Thus, it is unlikely that all material data would be available 
from a single set of experiments on a specific type of masonry and additional tests may have to be 
conducted. This indeed is not only expensive but also time consuming.   
A pragmatic alternative to experimental testing is the use of numerical/analytical tools to predict the 
response of structural masonry based on properties of constituents, which can be identified from 
standard material tests. Such an approach is more flexible in terms of providing the information for 
specification of material parameters in a macro-scale approach. In what follows, a methodology is 
reviewed which is primarily based on a numerical homogenization. 
 
2.1. Outline of the formulation 
 
The behavior of both constituents, i.e. bricks and mortar, is assumed to be elastic-brittle in tension 
regime, while for compressive stress trajectories, plastic-brittle characteristics are employed. Thus, in 
tension domain the yield and failure surfaces coincide with each other. However, in compression regime 
a distinct yield surface is introduced a priori, whose evolution is attributed to accumulated plastic 
distortions. Thus, 
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= − = = + − =  (1) 

 
In Eq.Error! Reference source not found., mσ , σ  and θ  represent a set of invariant measures of 
the stress tensor, 0σ  is the tensile strength of the material and ξ  is an internal variable whose 

evolution is a function of deviatoric plastic strain history, i.e. p p
ij ije eξ ∝& & & .  Moreover, ( )η ξ  is a 

monotonically increasing variable and for ξ → ∞  there is fη η→ , where fη  refers to the 
conditions at failure. 
 
Prior to the onset of localization, the deformation characteristics in compression domain are described 
by employing a non-associated flow rule (Shieh-Beygi & Pietruszczak, 2008). The loading/unloading 
criteria are established using the classical Kuhn–Tucker conditions and the elastoplastic operator is 
obtained following the standard plasticity procedure, i.e. invoking consistency condition and the 
additivity postulate.  
 
The conditions at failure are said to be associated with formation of a macro crack, whose direction is 
consistent with either Rankine’s or Mohr-Coulomb representation, viz. 
Eq.Error! Reference source not found.. In the post-localized range, a simple volume averaging 
procedure is employed based on the work reported by Pietruszczak (1999). The procedure incorporates 
the stress/strain rate averaging and the deformation within the fractured zone is defined in terms of 
velocity discontinuities across the interface. Detailed description of the formulation is presented in the 
papers by Pietruszczak, S.,& Gocevski, V., (2009) and Gocevski, V., (2008).  
 
2.2. Simulation of tests conducted by Page 
 
In order to illustrate the methodologies for specification of material characteristics of masonry, the 
experimental tests conducted by Page (1981, 1983) are considered. The tested specimens consisted of 
square 360×360mm panels with half-scale bricks. The samples were subjected to a series of biaxial 
load-controlled tests that were conducted at five different orientations of the bed joints, viz. 0°, 22.5°, 
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Figure 3. The distribution pattern Directional strength characteristic for uniaxial tension and biaxial 
compression-tension; comparison between the results for the full-scale and REV simulations 
 
 
3. MACROSCALE APPROACH; SPECIFICATION OF MATERIAL FUNCTIONS  
 
The numerical simulations for the masonry structures have been conducted by incorporating a 
continuum approach. The mathematical framework employs an elastic-brittle idealization. The 
argument here is that under a seismic excitation the predominant failure mode is a tensile fracture, which 
is of a brittle nature. The onset of localization and the orientation of the failure plane are derived from a 
functional form of a macroscopic failure criterion, by solving the constrained optimization problem. The 
response in the post-localized regime is modeled by employing the volume averaging procedure. 

In formulating the problem, the conditions at failure at the macro-level are defined following the 
framework based on the critical plane approach. In particular, a linear Coulomb failure function with a 
cut-off in tension domain is adopted, which is analogous to representation Eq. 
Error! Reference source not found. used at the meso-level, i.e. 

 1 0 2; tan( )n nF F cσ σ τ σ φ= − = + −  (2) 
where ;ij i j n ij i jn s n nτ σ σ σ= =  are the shear and normal components of the traction vector on the plane 
with unit normal ni  and 0i is n = .  In Eq.(2), the material parameters 0 ,σ φ  and c  are defined in 
terms of orientation-dependent functions 
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Here, the parameters 01 1 1..., ,...cσ φ  are the distribution coefficients and Ω’s are symmetric traceless 
tensors which describe the bias in the spatial variation of the strength parameters. The orientation of the 
localization plane can be determined by maximizing the failure functions F1 and F2, Eq.(2), with respect 
to ni and si, subject to constraints 1; 1; 0i i i i i in n s s n s= = = . For the given orientation, the conditions at 
failure correspond to max{F1,F2}=0.  
 
 
4. NUMERICAL ANALYSIS OF THE BRICK MASONRY STRUCTURE 
 
The building comprises of a basement, a ground floor and one floor above ground. It is composed of 
reinforced concrete frames and slabs. Unreinforced two layers non-bearing masonry walls serve as 
enclosures. The outside layer is continuously constructed of bricks for the entire height of the building 
while the internal layer build of bricks (bottom half of the story height) and concrete blocks (upper half 
of the storey height) is incorporated as infield panels between the columns. The laterally unsupported 
height of the walls is the entire storey height of 6.5 m. The outside view, the geometry of the building 
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“System DC90” dampers for energy dissipation was sufficient to fulfill the requirements of the NBC of 
Canada for drift limitation and maximum total deformation of the unreinforced masonry public safety 
building. The hysteresis diagrams of a typical masonry panel before Fig. 9a and after the added 
reinforcement Fig. 9b, indicates reduction of the deformations to a level acceptable by the NBC. It can 
be seen that the dampers are dissipating large portion of the seismic energy and in the same time 
preventing the masonry of excessive deformation and cracking. 
 
    (a)    P‐16 un‐reinforced structure                (b)    P‐16 reinforced structure 

 

 

 

 

Figure 9.    Hysteresis for a typical masonry panel obtained from the analysis: (a) before and (b) after 
the structural reinforcement with bracings and dampers 
 
 
5. FINAL REMARKS 
  
The work reported here presents a simple and effective strategy for analysing and reinforcing the 
non-bearing masonry walls in case of a seismic event. This study clearly demonstrates that, given the 
complexity of the structure, a conventional approach, based on simplistic standards/guidelines adopted 
by consulting engineering offices, would not be adequate here. In this case, an appropriate finite element 
analysis is required, examining the history of loading, to asses the efficiency of the proposed 
refurbishing strategy.  
The macroscopic failure criterion applied to evaluate the areas of potential damage (rather than an 
intuitive judgement based on the values of individual stress components) represents an additional step in 
the proper assessment of the destructive nature of the seismic forces. The authors trust that the obtained 
results will be of valuable insight in assessing the methodology of strengthening the walls in the 
upcoming refurbishing works.  
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